Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.119
Filtrar
1.
Curr Biol ; 34(9): R399-R406, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714172

RESUMEN

Coral reefs provide food and livelihoods for hundreds of millions of coastal people in over 100 countries. Recent global estimates for the total value of goods and services that they can generate indicate around US$ 105,000-350,000 per hectare per year, but local estimates of current total economic value can be one to two orders of magnitude lower. Unfortunately, coral reefs are under threat both from local human stressors (for example, sediment and nutrient run-off from agriculture, sewage discharges, dredging, destructive fishing, land 'reclamation', overfishing) and, increasingly, from stressors related to global climate change (not only El Niño Southern Oscillation-related marine heatwaves, which cause mass bleaching and mortality of corals, but also more frequent and powerful tropical cyclones and ocean acidification). Four successive mass-bleaching events on Australia's iconic Great Barrier Reef between 2016 and 2022 (plus another one currently underway) have focused world attention on the need for urgent action to protect coral reefs. It is clear that coral reef ecosystems will continue to decline unless anthropogenic greenhouse gas emissions are reduced and innovative management strategies are developed to assist adaptation.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Conservación de los Recursos Naturales/métodos , Animales , Antozoos/fisiología , Australia , Humanos , Restauración y Remediación Ambiental/métodos
2.
PLoS Biol ; 22(5): e3002620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743647

RESUMEN

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Asunto(s)
Reproducción , Estaciones del Año , Estrellas de Mar , Animales , Estrellas de Mar/genética , Estrellas de Mar/metabolismo , Estrellas de Mar/fisiología , Reproducción/genética , Femenino , Masculino , Estrés Fisiológico/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Especificidad de Órganos/genética , Arrecifes de Coral
3.
PLoS One ; 19(5): e0303539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743730

RESUMEN

Mollusk death assemblages are formed by shell remnants deposited in the surficial mixed layer of the seabed. Diversity patterns in tropical marine habitats still are understudied; therefore, we aimed to investigate the taxonomic, phylogenetic, and functional diversity of mollusk death assemblages at regional and local scales in coral reef sands and seagrass meadows. We collected sediment samples at 11 sites within two shallow gulfs in the Northwestern Caribbean Sea and Southeastern Gulf of Mexico. All the shells were counted and identified to species level and classified into biological traits. We identified 7113 individuals belonging to 393 species (290 gastropods, 94 bivalves, and nine scaphopods). Diversity and assemblage structure showed many similarities between gulfs given their geological and biogeographical commonalities. Reef sands had higher richness than seagrasses likely because of a more favorable balance productivity-disturbance. Reef sands were dominated by epifaunal herbivores likely feeding on microphytobenthos and bysally attached bivalves adapted to intense hydrodynamic regime. In seagrass meadows, suspension feeders dominated in exposed sites and chemosynthetic infaunal bivalves dominated where oxygen replenishment was limited. Time averaging of death assemblages was likely in the order of 100 years, with stronger effects in reef sands compared to seagrass meadows. Our research provides evidence of the high taxonomic, phylogenetic, and functional diversity of mollusk death assemblages in tropical coastal sediments as result of the influence of scale-related processes and habitat type. Our study highlights the convenience of including phylogenetic and functional traits, as well as dead shells, for a more complete assessment of mollusk biodiversity.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Sedimentos Geológicos , Moluscos , Filogenia , Animales , Cuba , Moluscos/clasificación , Moluscos/fisiología , Ecosistema
5.
PeerJ ; 12: e17291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708336

RESUMEN

The mass mortality event of the herbivorous sea urchin Diadema antillarum in 1983-1984 has been a major contributor to the diminished resilience of coral reefs throughout the Caribbean. The reduction in grazing pressure resulted in algae proliferation, which inhibited coral recruitment after disturbances such as disease, hurricanes, pollution and climatic change induced marine heat waves. Natural recovery of D. antillarum after the 1983-1984 die-off has been slow. However, the few locations with recovered populations exhibit signs of improvement in coral reef health, prompting interest in D. antillarum restoration. Current restoration strategies include translocation of wild individuals, the restocking of juveniles that are either cultured from gametes or collected as settlers and head-started in a nursery, and assisted natural recovery by providing suitable settlement substrate. Both the collection of wild settlers and assisted natural recovery necessitate an understanding of the local, spatiotemporal trends in settlement. In this study, which was carried out on the Dutch Caribbean Island of Saba, artificial turf settlement collectors were deployed at nine locations around the island and monitored from June 2019 till July 2020 (13 months). The primary objective was to identify trends in larval settlement in space and time, to be able to optimize restoration efforts. Additionally, the small size of Saba allowed us to deploy settlement collectors around the island and compare D. antillarum settlement between windward and leeward sides. Our study showed that on Saba, D. antillarum settlement peaked in June and July, following similar seasonal trends observed around other islands in the Northeastern Caribbean. By far the most settlement occurred at the leeward side of the island, suggesting that hydrodynamic forces entrained D. antillarum larvae in the lee of Saba and/or calmer waters facilitated settlement. Limited settlement occurred on the more exposed windward locations. The identified high settlement locations are candidates for settler collection and restoration attempts. Continued monitoring of D. antillarum settlement, especially in light of the 2022 D. antillarum die-off, holds significance as it can provide insights into the potential of natural recovery.


Asunto(s)
Arrecifes de Coral , Erizos de Mar , Animales , Larva , Región del Caribe
6.
Sci Rep ; 14(1): 10161, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698199

RESUMEN

Globally tropical Scleractinian corals have been a focal point for discussions on the impact of a changing climate on marine ecosystems and biodiversity. Research into tropical Scleractinian corals, particularly the role and breakdown of photoendosymbiosis in response to warming, has been prolific in recent decades. However, research into their subtropical, temperate, cold- and deep-water counterparts, whose number is dominated by corals without photoendosymbiosis, has not been as prolific. Approximately 50% of Scleractinian corals (> 700 species) do not maintain photoendosymbiosis and as such, do not rely upon the products of photosynthesis for homeostasis. Some species also have variable partnerships with photendosymbionts depending on life history and ecological niche. Here we undertake a systematic map of literature on Scleractinian corals without, or with variable, photoendosymbiosis. In doing so we identify 482 publications spanning 5 decades. In mapping research effort, we find publications have been sporadic over time, predominately focusing on a limited number of species, with greater research effort directed towards deep-water species. We find only 141 species have been studied, with approximately 30% of the total identified research effort directed toward a single species, Desmophyllum pertusum, highlighting significant knowledge gaps into Scleractinian diversity. We find similar limitations to studied locations, with 78 identified from the global data, of which only few represent most research outputs. We also identified inconsistencies with terminology used to describe Scleractinia without photoendosymbiosis, likely contributing to difficulties in accounting for their role and contribution to marine ecosystems. We propose that the terminology requires re-evaluation to allow further systematic assessment of literature, and to ensure it's consistent with changes implemented for photoendosymbiotic corals. Finally, we find that knowledge gaps identified over 20 years ago are still present for most aphotoendosymbiotic Scleractinian species, and we show data deficiencies remain regarding their function, biodiversity and the impacts of anthropogenic stressors.


Asunto(s)
Antozoos , Biodiversidad , Simbiosis , Antozoos/fisiología , Animales , Simbiosis/fisiología , Fotosíntesis , Ecosistema , Cambio Climático , Arrecifes de Coral
7.
Sci Adv ; 10(18): eadk6808, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701216

RESUMEN

Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/fisiología , Región del Caribe , Peces , Ecosistema
8.
Ecol Lett ; 27(5): e14429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690608

RESUMEN

Coral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning. Here, we propose a hypothesis linking annual coral bleaching and the transmission of symbionts to the next generation of coral hosts. We developed a dynamic model with two symbiont growth strategies, and found that high sexual recruitment and low adult coral survivorship and growth favour bleaching susceptibility, while the reverse promotes bleaching resilience. Otherwise, unexplained trends in the Indo-Pacific align with our hypothesis, where reefs and coral taxa exhibiting higher recruitment are more bleaching susceptible. The results from our model caution against interpreting potential shifts towards more bleaching-resistant symbionts as evidence of climate adaptation-we predict such a shift could also occur in declining systems experiencing low recruitment rates, a common scenario on today's reefs.


Asunto(s)
Antozoos , Blanqueamiento de los Corales , Arrecifes de Coral , Simbiosis , Animales , Antozoos/fisiología , Antozoos/microbiología , Modelos Biológicos
9.
Mar Pollut Bull ; 202: 116302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593712

RESUMEN

Plastic pollution poses global and societal concerns, especially from discarded fishing gear, threatening seabed environments like coral reefs. This study examines the incorporation of lost and/or abandoned fishing gear - specifically synthetic lines, and filaments - into the structure of orange tree coral, Dendrophyllia ramea along the coast of Portugal, in the North-East Atlantic Ocean. The specimens were inadvertently captured by local fishers (Sines and Cascais), with 6 % showing filaments inside their structure, raising questions about their potential impact on coral health. We discuss the implications of understanding the interactions between plastics, fishing gear, and corals, which is important for developing conservation strategies. We address the need for improved of measures aimed at reducing the impact of fishing gear on corals, emphasizing the importance of endorsing biodegradable fishing materials and supporting lost gear retrieval initiatives. Furthermore, we emphasize the urgent need to communicate these issues to both fishers and stakeholders.


Asunto(s)
Antozoos , Explotaciones Pesqueras , Plásticos , Portugal , Animales , Océano Atlántico , Arrecifes de Coral , Conservación de los Recursos Naturales , Monitoreo del Ambiente
10.
Sci Total Environ ; 929: 172562, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641098

RESUMEN

Poleward range expansion of marine organisms is commonly attributed to anthropogenic ocean warming. However, the extent to which a single species can migrate poleward remains unclear. In this study, we used molecular data to examine the current distribution of the Pocillopora damicornis species complex in Taiwan waters and applied niche modeling to predict its potential range through the end of the 21st Century. The P. damicornis species complex is widespread across shallow, tropical and subtropical waters of the Indo-Pacific regions. Our results revealed that populations from subtropical nonreefal coral communities are P. damicornis, whose native geographical ranges are approximately between 23°N and 35°N. In contrast, those from tropical reefs are P. acuta. Our analysis of 50 environmental data layers demonstrated that the concentrations of CaCO3 polymorphs had the greatest contributions to the distributions of the two species. Future projections under intermediate shared socioeconomic pathways (SSP) 2-4.5 and very high (SSP5-8.5) scenarios of greenhouse gas emissions showed that while sea surface temperature (SST) isotherms would shift northwards, saturation isolines of two CaCO3 polymorphs, calcite (Ωcal) and aragonite (Ωarag), would shift southwards by 2100. Subsequent predictions of future suitable habitats under those conditions indicated that distinct delimitation of geographical ranges for the two species would persist, and neither would extend beyond its native geographical zones, indicating that tropical Taiwan waters are the northern limit for P. acuta. In contrast, subtropical waters are the southern limit for P. damicornis. We concluded that the decline in CaCO3 saturation would make high latitudes less inhabitable, which could be one of the boundary elements that limit poleward range expansion driven by rising SSTs and preserve the latitudinal diversity gradient (LDG) on Earth. Consequently, poleward migration of tropical reef corals to cope with warming oceans should be reevaluated.


Asunto(s)
Antozoos , Carbonato de Calcio , Cambio Climático , Agua de Mar , Antozoos/fisiología , Animales , Agua de Mar/química , Taiwán , Temperatura , Arrecifes de Coral , Monitoreo del Ambiente , Migración Animal , Clima Tropical
11.
Sci Data ; 11(1): 398, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637551

RESUMEN

Reef cores are a powerful tool for investigating temporal changes in reef communities. Radiometric dating facilitates the determination of vertical accretion rates, which has allowed for examination of local-regional controlling factors, such as subsidence and sea level changes. Coral reefs must grow at sufficient rates to keep up with sea level rise, or risk 'drowning.' As sea level is expected to rise significantly in the next 100 years and beyond, it is important to understand whether reefs will be able to survive. Historical records of reef accretion rates extracted from cores provide valuable insights into extrinsic controlling factors of reef growth and are instrumental in helping predict if future reefs can accrete at rates needed to overcome predicted sea level changes. While extensive research exists at local and regional scales, limited attention has been given to identifying global patterns and drivers. To address this, we present "RADReef": A global dataset of dated Holocene reef cores. RADReef serves as a foundation for further research on past, present and future reef accretion.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral
12.
Sci Rep ; 14(1): 9006, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637581

RESUMEN

Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera, Pocillopora and Acropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, but Acropora bleached more severely than Pocillopora overall. Acropora bleached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching in Pocillopora corals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10-29 cm) or small colonies (5-9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Agua , Temperatura
13.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580121

RESUMEN

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Asunto(s)
Antozoos , Monitoreo del Ambiente , Ésteres , Organofosfatos , Contaminantes Químicos del Agua , Animales , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Organofosfatos/análisis , Organofosfatos/metabolismo , Ésteres/análisis , Bioacumulación , Agua de Mar/química , Arrecifes de Coral
14.
Sci Total Environ ; 927: 172258, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583618

RESUMEN

Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.


Asunto(s)
Técnicas Biosensibles , ADN Ambiental , Monitoreo del Ambiente , Estrellas de Mar , Técnicas Biosensibles/métodos , Animales , Monitoreo del Ambiente/métodos , Arrecifes de Coral , China
15.
Sci Rep ; 14(1): 8495, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605161

RESUMEN

A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Receptor Toll-Like 4 , Calentamiento Global , Lipopolisacáridos , FN-kappa B , Agua de Mar , Temperatura , Arrecifes de Coral
16.
Mar Pollut Bull ; 202: 116273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569302

RESUMEN

Coral reefs are home to a variety of species, and their preservation is a popular study area; however, monitoring them is a significant challenge, for which the use of robots offers a promising answer. The purpose of this study is to analyze the current techniques and tools employed in coral reef monitoring, with a focus on the role of robotics and its potential in transforming this sector. Using a systematic review methodology examining peer-reviewed literature across engineering and earth sciences from the Scopus database focusing on "robotics" and "coral reef" keywords, the article is divided into three sections: coral reef monitoring, robots in coral reef monitoring, and case studies. The initial findings indicated a variety of monitoring strategies, each with its own advantages and disadvantages. Case studies have also highlighted the global application of robotics in monitoring, emphasizing the challenges and opportunities unique to each context. Robotic interventions driven by artificial intelligence and machine learning have led to a new era in coral reef monitoring. Such developments not only improve monitoring but also support the conservation and restoration of these vulnerable ecosystems. Further research is required, particularly on robotic systems for monitoring coral nurseries and maximizing coral health in both indoor and open-sea settings.


Asunto(s)
Antozoos , Arrecifes de Coral , Monitoreo del Ambiente , Robótica , Monitoreo del Ambiente/métodos , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema
17.
Curr Biol ; 34(8): 1810-1816.e4, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38608678

RESUMEN

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Asunto(s)
Antozoos , Arrecifes de Coral , Antozoos/parasitología , Animales , Apicomplexa/fisiología , Apicomplexa/genética , Apicomplexa/clasificación , Simbiosis , Frío , Dinoflagelados/fisiología , Dinoflagelados/genética , Interacciones Huésped-Parásitos
18.
Sci Rep ; 14(1): 8915, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632306

RESUMEN

Ever since the first image of a coral reef was captured in 1885, people worldwide have been accumulating images of coral reefscapes that document the historic conditions of reefs. However, these innumerable reefscape images suffer from perspective distortion, which reduces the apparent size of distant taxa, rendering the images unusable for quantitative analysis of reef conditions. Here we solve this century-long distortion problem by developing a novel computer-vision algorithm, ReScape, which removes the perspective distortion from reefscape images by transforming them into top-down views, making them usable for quantitative analysis of reef conditions. In doing so, we demonstrate the first-ever ecological application and extension of inverse-perspective mapping-a foundational technique used in the autonomous-driving industry. The ReScape algorithm is composed of seven functions that (1) calibrate the camera lens, (2) remove the inherent lens-induced image distortions, (3) detect the scene's horizon line, (4) remove the camera-roll angle, (5) detect the transformable reef area, (6) detect the scene's perspective geometry, and (7) apply brute-force inverse-perspective mapping. The performance of the ReScape algorithm was evaluated by transforming the perspective of 125 reefscape images. Eighty-five percent of the images had no processing errors and of those, 95% were successfully transformed into top-down views. ReScape was validated by demonstrating that same-length transects, placed increasingly further from the camera, became the same length after transformation. The mission of the ReScape algorithm is to (i) unlock historical information about coral-reef conditions from previously unquantified periods and localities, (ii) enable citizen scientists and recreational photographers to contribute reefscape images to the scientific process, and (iii) provide a new survey technique that can rigorously assess relatively large areas of coral reefs, and other marine and even terrestrial ecosystems, worldwide. To facilitate this mission, we compiled the ReScape algorithm into a free, user-friendly App that does not require any coding experience. Equipped with the ReScape App, scientists can improve the management and prediction of the future of coral reefs by uncovering historical information from reefscape-image archives and by using reefscape images as a new, rapid survey method, opening a new era of coral-reef monitoring.


Asunto(s)
Antozoos , Animales , Humanos , Ecosistema , Arrecifes de Coral
19.
Proc Natl Acad Sci U S A ; 121(16): e2303336121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588432

RESUMEN

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.


Asunto(s)
Antozoos , Cambio Climático , Animales , Arrecifes de Coral , Temperatura , Agua , Ecosistema
20.
PeerJ ; 12: e17132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666078

RESUMEN

Tropical coastal benthic communities will change in species composition and relative dominance due to global (e.g., increasing water temperature) and local (e.g., increasing terrestrial influence due to land-based activity) stressors. This study aimed to gain insight into possible trajectories of coastal benthic assemblages in Raja Ampat, Indonesia, by studying coral reefs at varying distances from human activities and marine lakes with high turbidity in three temperature categories (<31 °C, 31-32 °C, and >32 °C). The benthic community diversity and relative coverage of major benthic groups were quantified via replicate photo transects. The composition of benthic assemblages varied significantly among the reef and marine lake habitats. The marine lakes <31 °C contained hard coral, crustose coralline algae (CCA), and turf algae with coverages similar to those found in the coral reefs (17.4-18.8% hard coral, 3.5-26.3% CCA, and 15-15.5% turf algae, respectively), while the higher temperature marine lakes (31-32 °C and >32 °C) did not harbor hard coral or CCA. Benthic composition in the reefs was significantly influenced by geographic distance among sites but not by human activity or depth. Benthic composition in the marine lakes appeared to be structured by temperature, salinity, and degree of connection to the adjacent sea. Our results suggest that beyond a certain temperature (>31 °C), benthic communities shift away from coral dominance, but new outcomes of assemblages can be highly distinct, with a possible varied dominance of macroalgae, benthic cyanobacterial mats, or filter feeders such as bivalves and tubeworms. This study illustrates the possible use of marine lake model systems to gain insight into shifts in the benthic community structure of tropical coastal ecosystems if hard corals are no longer dominant.


Asunto(s)
Arrecifes de Coral , Ecosistema , Temperatura , Clima Tropical , Animales , Indonesia , Lagos/química , Biodiversidad , Antozoos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA